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9.3 The Carathéodory-Hahn Theorem . . . . . . . . . . . . . . . . . . . . . . . 168

10 Particular Measures 174
10.1 Lebesgue Measure on Euclidean Space . . . . . . . . . . . . . . . . . . . . . 174
10.2 Lebesgue Measurability and Measure of Images of Mappings . . . . . . . . 182
10.3 Borel Measures on Rn and Regularity . . . . . . . . . . . . . . . . . . . . . 190
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Preface

The first three editions of Halsey L. Royden’s Real Analysis contributed to the education
of generations of mathematical analysis students. The fourth and this fifth edition of Real
Analysis preserve the goal of its venerable predecessors—to present the measure theory,
integration theory, and the elements of metric, topological, Hilbert, and Banach spaces that
a modern analyst should know.

As in the preceding editions, in Part I, Lebesgue measure and integration for functions
of a real variable are considered. In this fifth edition, the treatment of general measure and
integration is placed in Part II rather than Part III. What was formerly in Part II is placed
in Part III and a brief Part IV. In many courses based on this book, including my own,
it has been found preferable to follow in the course the new ordering. This brings measure
and integration on Euclidean space closer to their origin, the case of real variables. It also
presents the opportunity to more strongly foreshadow, in the context of general measure
and integration, concepts that later appear in general spaces.

First, a few remarks regarding specific topics in Part I.

• Somewhat simpler proofs of the Vitali Covering Lemma and Lebesgue’s Theorem on
the differentiability almost everywhere of a monotone function are provided.

• We prove von Neuman’s Composition Theorem, according to which a strictly increas-
ing, continuous function f: [a, b] → R has an absolutely continuous inverse function
if and only if the composition g: f is measurable whenever the function g: R→ R is
measurable.

• It is shown that a bounded function on a closed, bounded interval is Riemann in-
tegrable if and only if its set of discontinuities has measure zero. Alongside this, we
present an ancestor of the Dominated Convergence Theorem for the Lebesgue inte-
gral, but for the Riemann integrable, called the Arzelá Convergence Theorem. The
difficulty in proving this theorem without leaving the context of Riemann integration
is remarkable.

• The concept of uniform integrability is prominently presented, and the Vitali Conver-
gence Theorem is proven and made the centerpiece of the proof of the fundamental
theorem of calculus for the Lebesgue integral. We prove that the divided difference
functions for an absolutely continuous function are uniformly integrable, so that the
fundamental theorem follows by directly taking the limit in its elementary, discrete
formulation.

• Following Peter Lax, we consider rapidly Cauchy sequences in the Lp(E) spaces: such
sequences converge pointwise and in Lp to function in Lp. The identification of such
sequences provides a more conceptual proof of the completeness of Lp spaces.

• An elegant proof of Lusin’s Theorem, due to Peter Loeb and Eric Talvila, is given, and
from this theorem it immediately follows that a measurable function is the pointwise
limit almost everywhere of sequence of continuous functions. This is made the basis
for proving, for 1 ≤ p <∞, the separability of Lp(R).

• The change of variables theorem for the Lebesgue integral for functions of a real vari-
able is proven. This is one of many proofs in which the characterization of Lebesgue

x



Preface xi

measurable sets as being Gδ sets from which a set of measure zero has been excised is
used. The proof brings to light delicate points regarding the measurability of composi-
tions, which are informed by the just mentioned von Neumann Composition Theorem.

• A brief section on convergence in measure and convergence in the mean is included.

The treatment of Lebesgue measure and integration on Rn now includes the following.

• Convolution of pairs of functions on Rn are considered. First, Young’s Convolution
Inequality and Minkowski’s Integral Inequality are proven. Based on these, we prove
that, for 1 ≤ p < ∞, the compactly supported, infinitely differentiable functions are
dense in Lp(Rn , µn), and also prove a smooth version of Urysohn’s Lemma in Rn .

• Sufficient conditions for a mapping on Rn to preserve Lebesgue measurability of sets
are provided. Being Lipschitz is one such condition. We prove the Vitali Partition
Theorem, according to which an open subset of Rn is, after the excision of a set of
measure zero, the union of a disjoint, countable collection of open balls. Using this, it
follows that a linear operator L :Rn → Rn preserves distance between points if and
only is it preserves Lebesgue measure. This provides a simple geometric foundation
for the proof that multiplication by the absolute value of the determinant gives the
change in Lebesgue measure induced by a linear operator.

• We prove that any finite Borel measure on Rn is regular, in anticipation of the later
proof of Ulam’s Regularity Theorem, according to which a finite Borel measure on a
separable, complete metric space is regular.

• Care has been taken to explicitly present the set-theoretic properties of measurable
rectangles that are at the heart of the proof of the Fubini and Tonelli Theorems, and
which, once presented, actually suggest the method of proof.

There is more likely to be agreement about what an analyst should know about mea-
sure and integration than there is about what should be known about general spaces. His-
torically, important special cases of theorems in general spaces were first revealed for spaces
of integrable functions. We have commented on these generalizations as the special cases
occur, with a view toward motivating them. Consider three examples of these. (i) An impor-
tant consequence of the Hahn-Banach Theorem regarding the existence of bounded linear
functionals on a normed linear space that separate points is explicitly established, and used,
when considering, for 1 ≤ p <∞, the dual of the Lp spaces. (ii) In these same spaces, weak
sequential compactness of closed, bounded, convex subsets is proven, and used to establish
minima for convex, continuous functions: this foreshadows weak sequential compactness in
reflexive Banach space. (iii) The Uniform Boundedness Principle is directly proved for linear
functionals rather than as a consequence of the Baire Category Theorem, using an elegant
proof of Hahn. This is used to show that weakly convergent sequences are bounded, in these
same Lp spaces.

Regarding the selection of general spaces in Part III, normed linear spaces need little
motivation, since the Lp spaces have already been broadly considered in the first two parts.
Then there are important concepts regarding subsets of normed linear spaces that are in-
dependent of the ambient linear structure. These properties are captured in the structure
of a metric space, and for these the concepts of compactness and completeness play leading
roles. The importance of completeness is brought to the forefront in the Baire Category
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Theorem, with its quite elementary proof, and its remarkable diverse applications to indi-
vidual operators (the Open Mapping and Closed Graph Theorem), to sequences of operators
and functions, both linear and non-linear, and to properties of set-functions that are lim-
its of sequences of measures. For complete metric spaces, we also prove, again with quite
elementary proofs, the Banach Contraction Principle and a corollary, the Picard Existence
Theorem. The importance of compactness goes back to the proof at the beginning of cal-
culus of Rolle’s Theorem. We show that a metric space is compact if and only if every
continuous real-valued function on it has a minimum value.

Perhaps, for the young analyst, the motivation to extend the concept of metric space to
topological space is not so evident. However, we prove a theorem of Riesz which asserts that
the closed unit ball of a normed linear space is compact with respect to the metric induced
by the norm if and only if the space has finite dimension. We also show, in Part I, that
sequential weak compactness is sometimes an able substitute for the loss of compactness
for the metric induced by the norm. It is natural to seek the appropriate metric with
respect to which convergence is weak sequential compactness. However, we prove that for
an infinite dimensional normed linear space, there is not a metric with respect to which
sequential convergence is weak sequential convergence. Topological spaces provide a more
flexible structure that is not dependent on sequential arguments or countable constructions.
For topological spaces, we prove two fundamental theorems, which are strong extensions of
their forebears in metric spaces. For metric spaces, the countable product of such spaces is
directly defined, and it follows immediately that the countable product of compact metric
spaces is compact. The Tychonoff Product Theorem asserts that the arbitrary product of
compact topological spaces is compact. The proof of Urysohn’s Lemma in a metric space is
an immediate consequence of the continuity of the distance functions. The proof of Urysohn’s
Lemma for a normal topological space is more delicate. It has many interesting applications,
among them being the Urysohn Metrization Theorem: if a topological space has a countable
base, then the topology is induced by a metric if and only if it is normal.

Selected topics in linear operator theory and, in particular, for linear operators on
Hilbert spaces, are presented. These include the consideration of Fredholm operators, which
are widely useful in both applied mathematics and modern topology. More particular specific
topics, for instance, von Neumann’s Theorem on the existence of Haar measure on a compact
group and the Stone-Weierstrass Theorem, are also presented. These are both important and
elegant. Nevertheless, a different selections of topics could also be well justified. I welcome
comments regarding the selections which have, or should have, been made. And, of course,
any other comments are also very welcome. I can be contacted through pmf@math.umd.edu.
A list of errata and remarks is on https://www.pearsonhighered.com/mathstatsresources.
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In these preliminaries, we describe some notions regarding sets, mappings, and relations
that will be used throughout the book. Our purpose is descriptive and the arguments given
are directed toward plausibility and understanding rather than rigorous proof based on
an axiomatic basis for set theory. There is a system of axioms called the Zermelo-Fraenkel
Axioms for Sets upon which it is possible to formally establish properties of sets and thereby
properties of relations and functions.

UNIONS AND INTERSECTIONS OF SETS

For a set A,1 the membership of the element x in A is denoted by x∈A and the
nonmembership of x in A is denoted by x /∈A. We often say a member of A belongs to
A and call a member of A a point in A. Frequently, sets are denoted by braces, so that
{x | statement about x} is the set of all elements x for which the statement about x is true.

Two sets are the same provided they have the same members. Let A and B be sets.
We call A a subset of B provided each member of A is a member of B; we denote this by
A ⊆ B and also say that A is contained in B or B contains A. A subset A of B is called
a proper subset of B provided A 6= B. The union of A and B, denoted by A ∪ B, is
the set of all points that belong either to A or to B; that is, A ∪ B= {x |x∈A or x∈B}.
The word or is used here in the nonexclusive sense, so that points which belong to both
A and B belong to A ∪ B. The intersection of A and B, denoted by A ∩ B, is the set
of all points that belong to both A and B; that is, A ∩ B= {x |x∈A and x∈B}. The
complement of A in B, denoted by B∼A, is the set of all points in B that are not in A;
that is, B∼A = {x |x∈B, x /∈A}. If, in a particular discussion, all of the sets are subsets
of a reference set X, we often refer to X ∼A simply as the complement of A.

The set that has no members is called the empty-set and denoted by ∅. A set that is
not equal to the empty-set is called non-empty. We refer to a set that has a single member
as a singleton set. Given a set X, the set of all subsets of X is denoted by P(X) or 2X ;
it is called the power set of X.

In order to avoid the confusion that might arise when considering sets of sets, we
often use the words “collection” and “family” as synonyms for the word “set.” Let F be a
collection of sets. We define the union of F , denoted by

⋃
F ∈F F, to be the set of points

1The Oxford English Dictionary devotes several hundred pages to the definition of the word “set.”
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that belong to at least one of the sets in F . We define the intersection of F , denoted by⋂
F ∈F F, to be the set of points that belong to every set in F . The collection of sets F is

said to be disjoint provided the intersection of any two distinct sets in F is empty. For a
family F of sets, the following identities are established by checking set inclusions.

De Morgan’s identities

X ∼

[ ⋃
F ∈F

F

]
=

⋂
F ∈F

[X ∼F ] and X ∼

[ ⋂
F ∈F

F

]
=

⋃
F ∈F

[X ∼F ],

that is, the complement of the union is the intersection of the complements, and the com-
plement of the intersection is the union of the complements.

For a set Λ, suppose that for each λ∈Λ, there is defined a set Eλ. Let F be the
collection of sets {Eλ |λ∈Λ}. We write F = {Eλ}λ∈Λ and refer to this as an indexing (or
parametrization) of F by the index set (or parameter set) Λ.

Mappings between sets

Given two sets A and B, by a mapping or function from A into B we mean a corre-
spondence that assigns to each member of A a member of B. In the case B is the set of
real numbers we always use the word “function.” Frequently we denote such a mapping by
f: A→B, and for each member x of A, we denote by f(x) the member of B to which x is
assigned. For a subset A′ of A, we define f(A′) = {b | b= f(a) for some member a of A′}:
f(A′) is called the image of A′ under f. We call the set A the domain of the function f and
f(A) the image or range of f . If f(A) =B, the function f is said to be onto. If for each
member b of f(A) there is exactly one member a of A for which b= f(a), the function f is
said to be one-to-one. A mapping f: A→B that is both one-to-one and onto is said to be
invertible; we say that this mapping establishes a one-to-one correspondence between
the sets A and B. Given an invertible mapping f: A→B, for each point b in B, there is
exactly one member a of A for which f(a) = b and it is denoted by f−1(b). This assignment
defines the mapping f−1: B→A, which is called the inverse of f . Two sets A and B are
said to be equipotent provided there is an invertible mapping from A onto B. Two sets
which are equipotent are, from the set-theoretic point of view, indistinguishable.

Given two mappings f: A→B and g: C→D for which f(A) ⊆ C then the composition
g◦f: A→D is defined by [g◦f ](x) = g(f(x)) for each x∈A. It is not difficult to see that the
composition of invertible mappings is invertible. For a set D, define the identity mapping
idD: D→D by idD(x) = x for all x∈D. A mapping f: A→B is invertible if and only if
there is a mapping g: B→A for which

g ◦ f = idA and f ◦ g = idB .

Even if the mapping f: A→B is not invertible, for a set E, we define f−1(E) to be the
set {a∈A | f(a)∈E}; it is called the inverse image of E under f. We have the following
useful properties: for any two sets E1 and E2,

f−1(E1 ∪ E2) = f−1(E1) ∪ f−1(E2), f−1(E1 ∩ E2) = f−1(E1) ∩ f−1(E2)

and
f−1(E1∼E2) = f−1(E1)∼ f−1(E2).
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Finally, for a mapping f: A→B and a subset A′ of its domain A, the restriction of f to
A′, denoted by f |A′ , is the mapping from A′ to B which assigns f(x) to each x∈A′.

EQUIVALENCE RELATIONS, THE AXIOM OF CHOICE, AND ZORN’S LEMMA

Given two non-empty sets A and B, the Cartesian product of A with B, denoted by
A×B, is defined to be the collection of all ordered pairs (a, b), where a∈A and b∈B and
we consider (a, b) = (a′, b′) if and only if a = a′ and b = b′.2 For a non-empty set X, we
call a subset R of X ×X a relation on X and write xRx′ provided (x, x′) belongs to R.
The relation R is said to be reflexive provided xRx, for all x∈X; the relation R is said
to be symmetric provided xRx′ if x′Rx; the relation R is said to be transitive provided
whenever xRx′ and x′Rx′′, then xRx′′.

Definition A relation R on a set X is called an equivalence relation provided it is
reflexive, symmetric, and transitive.

Given an equivalence relation R on a set X, for each x∈X, the set Rx = {x′ |x′ ∈X, xRx′}
is called the equivalence class of x (with respect to R). The collection of equivalence classes
is denoted by X/R. For example, given a set X, the relation of equipotence is an equivalence
relation on the collection 2X of all subsets of X. The equivalence class of a set with respect
to the relation equipotence is called the cardinality of the set.

Let R be an equivalence relation on a set X. Since R is symmetric and transitive,
Rx = Rx′ if and only if xRx′ and therefore the collection of equivalence classes is disjoint.
Since the relation R is reflexive, X is the union of the equivalence classes. Therefore, X/R
is a disjoint collection of non-empty subsets of X whose union is X. Conversely, given a
disjoint collection F of non-empty subsets of X whose union is X, the relation of belonging
to the same set in F is an equivalence relation R on X for which F = X/R.

Given an equivalence relation on a set X, it is often necessary to choose a subset C
of X which consists of exactly one member from each equivalence class. Is it obvious that
there is such a set? Ernst Zermelo called attention to this question regarding the choice of
elements from collections of sets. Suppose, for instance, we define two real numbers to be
rationally equivalent provided their difference is a rational number. It is easy to check that
this is an equivalence relation on the set of real numbers. But it is not easy to identify a set
of real numbers that consists of exactly one member from each rational equivalence class.

Definition Let F be a non-empty family of non-empty sets. A choice function f on F is
a function f from F to ∪F ∈FF with the property that for each set F in F , f(F ) is a member
of F.

Zermelo’s Axiom of Choice Let F be a non-empty collection of non-empty sets. Then
there is a choice function on F .

Very roughly speaking, a choice function on a family of non-empty sets “chooses” a member
from each set in the family. We have adopted an informal, descriptive approach to set theory
and accordingly we will freely employ, without further ado, the Axiom of Choice.

2In a formal treatment of set theory based on the Zermelo-Fraenkel Axioms, an ordered pair (a, b) is
defined to be the set {{a}, {a, b}} and a function with domain in A and image in B is defined to be a
non-empty collection of ordered pairs in A×B with the property that if the ordered pairs (a, b) and (a, b′)
belong to the function, then b = b′.
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Definition A relation R on a set non-empty X is called a partial ordering provided it
is reflexive, transitive, and, for x, x′ in X,

if xRx′ and x′Rx, then x = x′.

A subset E of X is said to be totally ordered provided for x, x′ in E, either xRx′ or
x′Rx. A member x of X is said to be an upper bound for a subset E of X provided x′Rx
for all x′ ∈E, and said to be maximal provided the only member x′ of X for which xRx′

is x′ = x.

For a family F of sets and A,B ∈F , define ARB provided A ⊆ B. This relation of
set inclusion is a partial ordering of F . Observe that a set F in F is an upper bound
for a subfamily F ′ of F provided every set in F ′ is a subset of F and a set F in F is
maximal provided it is not a proper subset of any set in F . Similarly, given a family F of
sets and A,B ∈F define ARB provided B ⊆ A. This relation of set containment is a
partial ordering of F . Observe that a set F in F is an upper bound for a subfamily F ′ of
F provided every set in F ′ contains F and a set F in F is maximal provided it does not
properly contain any set in F .

Zorn’s Lemma Let X be a partially ordered set for which every totally ordered subset has
an upper bound. Then X has a maximal member.

We will use Zorn’s Lemma to prove some of our most important results, including the
Hahn-Banach Theorem, the Tychonoff Product Theorem, and the Krein-Milman Theorem.
Zorn’s Lemma is equivalent to Zermelo’s Axiom of Choice. In the book Functional Anal-
ysis by Theo Bühler and Deitmar Salamon, there is a discussion and concise proof of the
equivalence of the Axiom of Choice and Zorn’s Lemma.

We have defined the Cartesian product of two sets. It is useful to define the Carte-
sian product of a general parametrized collection of sets. For a collection of sets {Eλ}λ∈Λ

parametrized by the set Λ, the Cartesian product of {Eλ}λ∈Λ, which we denote by Πλ∈ΛEλ,
is defined to be the set of functions f from Λ to

⋃
λ∈ΛEλ such that for each λ∈Λ, f(λ)

belongs to Eλ. It is clear that the Axiom of Choice is equivalent to the assertion that
the Cartesian product of a non-empty family of non-empty sets is non-empty. Note that
the Cartesian product is defined for a parametrized family of sets and that two different
parametrizations of the same family will have different Cartesian products. This general
definition of Cartesian product is consistent with the definition given for two sets. Indeed,
consider two non-empty sets A and B. Define Λ = {λ1, λ2} where λ1 6= λ2 and then define
Eλ1 = A and Eλ2 = B. The mapping that assigns to the function f ∈Πλ∈ΛEλ the ordered
pair (f(λ1), f(λ2)) is an invertible mapping of the Cartesian product Πλ∈ΛEλ onto the
collection of ordered pairs A×B and therefore these two sets are equipotent. For two sets
E and Λ, define Eλ = E for all λ∈Λ. Then the Cartesian product Πλ∈ΛEλ is equal to the
set of all mappings from Λ to E and is denoted by EΛ.
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We assume the reader has a familiarity with the properties of real numbers, sets of real
numbers, sequences of real numbers, and real-valued functions of a real variable, which are
usually treated in an undergraduate course in analysis. This familiarity will enable the reader
to assimilate the present chapter, which is devoted to rapidly but thoroughly establishing
those results which will be needed and referred to later. We assume that the set of real
numbers, which is denoted by R, satisfies three types of axioms. We state these axioms and
derive from them properties on the natural numbers, rational numbers, and countable sets.
With this as background, we establish properties of open and closed sets of real numbers;
convergent, monotone, and Cauchy sequences of real numbers; and continuous real-valued
functions of a real variable.

1.1 THE FIELD, POSITIVITY, AND COMPLETENESS AXIOMS

We assume as given the set R of real numbers such that for each pair of real numbers a and
b, there are defined real numbers a+ b and ab called the sum and product, respectively, of
a and b for which the following Field Axioms, Positivity Axioms, and Completeness Axiom
are satisfied.

The field axioms

Commutativity of Addition: For all real numbers a and b,

a+ b = b+ a.

Associativity of Addition: For all real numbers a, b, and c,

(a+ b) + c = a+ (b+ c).

The Additive Identity: There is a real number, denoted by 0, such that

0 + a = a+ 0 = a for all real numbers a.

7
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The Additive Inverse: For each real number a, there is a real number b such that

a+ b = 0.

Commutativity of Multiplication: For all real numbers a and b,

ab = ba.

Associativity of Multiplication: For all real numbers a, b, and c,

(ab)c = a(bc).

The Multiplicative Identity: There is a real number, denoted by 1, such that

1a = a1 = a for all real numbers a.

The Multiplicative Inverse: For each real number a 6= 0, there is a real number b such that

ab = 1.

The Distributive Property: For all real numbers a, b, and c,

a(b+ c) = ab+ ac.

The Nontriviality Assumption:
1 6= 0.

Any set that satisfies these axioms is called a field. It follows from the commutativity
of addition that the additive identity, 0, is unique, and we infer from the commutativity
of multiplication that the multiplicative unit, 1, also is unique. The additive inverse and
multiplicative inverse also are unique. We denote the additive inverse of a by −a and, if
a 6= 0, its multiplicative inverse by a−1 or 1/a. If we have a field, we can perform all the
operations of elementary algebra, including the solution of simultaneous linear equations.
We use the various consequences of these axioms without explicit mention1.

The positivity axioms

In the real numbers there is a natural notion of order: greater than, less than, and so on.
A convenient way to codify these properties is by specifying axioms satisfied by the set of
positive numbers. There is a set of real numbers, denoted by P, called the set of positive
numbers. It has the following two properties:

P1 If a and b are positive, then ab and a+ b are also positive.
P2 For a real number a, exactly one of the following three alternatives is true:

a is positive, −a is positive, a = 0.
1A systematic development of the consequences of the Field Axioms may be found in the first chapter

of the classic book A Survey of Modern Algebra by Garrett Birkhoff and Saunders MacLane [BM97].
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The Positivity Axioms lead in a natural way to an ordering of the real numbers: for real
numbers a and b, we define a > b to mean that a − b is positive, and a ≥ b to mean that
a > b or a = b. We then define a < b to mean that b > a, and a ≤ b to mean that b ≥ a.

Using the Field Axioms and the Positivity Axioms, it is possible to formally establish
the familiar properties of inequalities (see Problem 2). Given real numbers a and b for which
a < b, we define (a, b) = {x | a < x < b}, and say a point in (a, b) lies between a and b. We
call a non-empty set I of real numbers an interval provided for any two points in I, and
all the points that lie between these points also belong to I. Of course, the set (a, b) is an
interval, as are the following sets:

[a, b] = {x | a ≤ x ≤ b} ; [a, b) = {x | a ≤ x < b} ; (a, b] = {x | a < x ≤ b} . (1)

The completeness axiom

A non-empty set E of real numbers is said to be bounded above provided there is a real
number b such that x ≤ b for all x ∈ E : the number b is called an upper bound for E.
Similarly, we define what it means for a set to be bounded below and for a number to
be a lower bound for a set. A set that is bounded above need not have a largest member.
But the next axiom asserts that it does have a smallest upper bound.

The Completeness Axiom Let E be a non-empty set of real numbers that is bounded
above. Then among the set of upper bounds for E there is a smallest, or least, upper bound.

For a non-empty set E of real numbers that is bounded above, the least upper bound
of E, the existence of which is asserted by the Completeness Axiom, will be denoted by
l.u.b.E. The least upper bound of E is usually called the supremum of E and denoted by
supE. It follows from the Completeness Axiom that every non-empty set E of real numbers
that is bounded below has a greatest lower bound; it is denoted by g.l.b.E and usually
called the infimum of E and denoted by inf E. A non-empty set of real numbers is said to
be bounded provided it is both bounded below and bounded above.

The triangle inequality

We define the absolute value of a real number x, |x|, to be x if x ≥ 0 and to be −x if x < 0.
The following inequality, called the Triangle Inequality, is fundamental in mathematical
analysis: for any pair of real numbers a and b,

|a+ b| ≤ |a|+ |b|.

The extended real numbers

It is convenient to introduce the symbols ∞ and −∞ and write −∞ < x < ∞ for all real
numbers x. We call the set R∪±∞ the extended real numbers. If a non-empty set E of
real numbers is not bounded above we define its supremum to be∞. It is also convenient to
define −∞ to be the supremum of the empty-set. Therefore, every set of real numbers has a
supremum that belongs to the extended real numbers. Similarly, we can extend the concept




